
Bossa release notes

• November 1, 2004: A more precise set of event types are available for use via the compiler option
-pb. These are described here, and distinguish cases where the policy decides it does not want to run
a process from cases where the process is unable to run due to its recent kernel behavior.

• May 2, 2004: Some notes on the implementation of virtual schedulers:

Virtual schedulers manipulate schedulers rather than processes. For this, they can use two constructs
that are not allowed in process schedulers: next(p) and exp => forwardImmediate(). In next(p), p
is an expression evaluating to a process, such as e.target. next(p) returns the child scheduler that is
directly or indirectly managing the process p. exp => forwardImmediate() forwards the current event
notification to the scheduler indicated by exp.

Like a process scheduler, a virtual scheduler defines a set of states. Each state is declared to be in
one of the classes RUNNING, READY, or BLOCKED. The state of a child scheduler must coincide
with the scheduler state of the child scheduler, as computed from the states of the processes that it is
directly or indirectly managing. For example, a scheduler that is directly or indirectly managing some
processes in READY states but no process in a RUNNING state has scheduler state READY, and thus
must be a state in the READY class of its virtual scheduler.

The main complexity in the definition of a virtual scheduler is in the semantics of the operation exp
=> forwardImmediate(). Forwarding an event notification to a child scheduler may ultimately cause
some changes in process states, and thus a change in the scheduler state of the scheduler exp. This
implies that the state of the scheduler exp must also change to a state of the new class. The problem
is that there is nothing in the syntax exp => forwardImmediate() that indicates what this new class
should be. Because virtual schedulers tend to be quite simple, it is often the case that there is only one
state in the given class, and thus the child scheduler is simply put in this state. If there is more than
one state, one must be designated as public and the others as private, using the public and private
keywords in the state declaration (public is the default). exp => forwardImmediate() always move the
scheduler exp to the public state that corresponds to its scheduler state after the forwarding operation.
The only exception is when the scheduler is initially in a state whose class is the same as its scheduler
state after the forwarding operation. In this case, the scheduler remains where it is. If the scheduler is
moved to a public state and actually a private state is desired, the scheduler can be moved explicitly
to the new state after the exp => forwardImmediate() operation. This is illustrated by the following
example, extracted from the implementation of the fixed priority virtual scheduler:

states = {
RUNNING running : scheduler;
READY ready : sorted queue;
READY yield : private scheduler;
BLOCKED blocked : queue;

}

...

On yield.system.pause.*, yield.user.* {
if (next(e.target) in running) {
scheduler s = running;
bool toyield = !empty(ready);
s => forwardImmediate();

1



if (toyield) {
s => yield;

}
}

}

Except in the case of bossa.schedule and preempt, the operation exp => forwardImmediate() can only
be used when exp evaluates to the scheduler that is managing the target process (or target scheduler
in the case of the expiration of a timer that is associated with a scheduler, but even in this case,
the proper scheduler is obtained by next(e.target)). exp => forwardImmediate() always forwards the
event indicated by the handler containing this code. Otherwise, the only state change operations (ie,
exp => state) that are allowed are from a state in the RUNNING class to a state in the READY class
or from a state in some class to another state in the same class. A state change operation from a state
in the RUNNING class to a state in the READY class implicitly forwards a preempt event notification
to the affected scheduler.

exp => forwardImmediate() can only be executed once within the execution of an event handler.

• April 20, 2004: Processes can be specified to be added to the beginning or end of a sorted queue
that is statically sorted using the following syntax:

– exp => queue.head, to add the process represented by exp to the front of the queue queue.

– exp => queue.tail, to add the process represented by exp to the end of the queue queue.

• January 13, 2004: The names of the functions for manipulating time have been changed. The
following functions are defined for both the version of Bossa with high-resolution timers and for the
Bossa without high-resolution timers:

– now() : unit -> time
The current time.

– start relative timer(timer,offset) : timer * time -> unit
Set a timer for offset time units in the future.

– start absolute timer(timer,time) : timer * time -> unit
Set a timer for the time time.

– stop timer(timer) : timer -> unit
Stop a timer.

– time to ticks(t) : time -> int
Convert a time to a number of ticks (on Bossa with high-resolution timers, this is equivalent to
time to jiffies, but is included for portability).

– ticks to time(n) : int -> time
Convert a number of ticks to a time.

The following functions are only defined for the version of Bossa with high-resolution timers:

– make time(sec,nsec) : int * int -> time
Convert a pair of a number of seconds and a number of nanoseconds to the corresponding time.

– make cycle time(jiffies,cycles) : int * cycles -> time
Convert a pair of a number of jiffies and a number of cycles to the corresponding time.

– make cycles(n) : int -> cycles
Cast an integer to a number of cycles.

– time to jiffies(t) : time -> int
Drop the subjiffies component of a time.

2



– time to subjiffies(t) : time -> cycles
Drop the jiffies component of a time.

The following functions are planned, but are unfortunately not currently implemented:

– time to seconds(t) : time -> int
Drop the nanoseconds component of a time.

– time to nanoseconds(t) : time -> int
Drop the seconds component of a time.

• January 9, 2004: In the version of Bossa with high-resolution timers, Configure high-resolution-
timers must be set to Y in the General setup menu. Use the Help button to determine the
appropriate value for Clock source? for your machine.

• January 8, 2004: The function error can be used in an interface function with a string argument
to give an error message (to appear in the kernel message log, eg /var/log/messages) and abort the
interface function. error should not be used once the interface function has made any side effects to
the policy state, such as changing the state of a processes or assigning to a process attribute, as these
changes will not be undone by the error. In particular, when error is used in the attach function after
a state change operation, the policy will be left in an incoherent state.

• December 3, 2003: A virtual scheduler can now define interface functions. The function mount,
defined in load.c now returns an integer indicating the index associated with the child scheduler. This
integer should be given in the position of a scheduler argument of a virtual scheduler interface function,
just as the pid (or 0, to indicate the current process) is given in the position of a process argument of
a process scheduler.

The manager program mentioned in the release notes for April 20 is no longer part of the kernel
hierarchy, but is available here: manager.c.

The language now includes some types and functions for manipulating times that are particularly useful
when writing policies for the version of Bossa with high-resolution timers. These are:

– The type cycles, to represent a number of cycles.

– The function time to ticks : time -> int, to convert a time to a number of ticks (an integer). In
the version of Bossa without high resolution timers, this function just amounts to a type cast. In
the version of Bossa with high resolution timers, this function drops the sub-jiffie component of
the time information.

– ticks to time : int -> time to convert an integer, intended to represent a number of ticks, to a
time. In the version of Bossa without high resolution timers, this function just amounts to a
type cast. In the version of Bossa with high resolution timers, this function sets the sub-jiffie
component of the time information to 0.

– cycles to time : cycles -> time, to convert a number of cycles to a time. This function is only
defined in the version of Bossa with high-resolution timers.

– drop jiffies : time -> cycles, drops the jiffies part of a time value, leaving only the number of
cycles. This function is only defined in the version of Bossa with high-resolution timers.

– make time : int * int -> time, to create a time from a pair of integers. The first integer is the
number of jiffies and the second is the number of cycles. This function is only defined in the
version of Bossa with high-resolution timers.

• October 4, 2003: If the magic sysrq key (bound to z by default in Bossa) does not work, check that
the initialization file /etc/sysctl.conf does not set kernel.sysrq to 0.

3



• September 15, 2003: A Bossa policy can now define any number of timers, and specify separate
handlers for each one. Timers can be defined as global variables or as being local to a child process (for
a process scheduler) or to a child scheduler (for a virtual scheduler). An example of a policy that defines
multiple timers is given in Timer.bossa. An example of the use of this policy is given in the file timer.c
in the directory timer demo.tar.gz. For each timer, there should be a handler unblock.timer.XXX
where XXX is the name of the variable containing the timer

Timers are created and destroyed automatically. A timer declared to be in a global variable is created
when the scheduler is loaded into the hierarchy and destroyed when the scheduler is unloaded from
the hierarchy. A timer associated with a process or scheduler is created when the process or scheduler
attaches to its parent and destroyed when the process or scheduler departs its parent or is terminated.

The following functions are available for use in a policy, as illustrated in Timer.bossa:

– void start absolute timer(timer,time);: set timer for the absolute time time.

– void start relative timer(timer,time);: set timer for time units (jiffies) in the future.

– void stop timer(timer);: stop timer.

– time now();: obtain the current time.

• August 18, 2003: It is now possible to change schedulers from user space. The permissions on
the “device” (/dev/bossa) have changed to make this possible. If you have not used Bossa before,
it should work immediately. If you have used Bossa before, it may be that your installation of devfs
remembers the previous permissions associated with /dev/bossa. To check for this, look in your devfs
configuration file (/etc/devfs/devfsd.conf) for the variable RESTORE. If this variable is defined, delete
the information about Bossa in the directory that is the value of this variable.

The /proc interface has been improved to give information about the hierarchy. This information is
available in the directory /proc/bossa. This directory contain one immediate subdirectory, named
according to the scheduler at the root of the hierarchy. This subdirectory itself contains nested sub-
directories reflecting the hierarchy structure. Each subdirectory is associated with an “info” file, that
gives information about the schedulers or processes that are the immediate children of the scheduler
associated with the subdirectory. “info” files are also present at the /proc/bossa level. For a scheduler
that is loaded into the hierarchy, such a file is just a symbolic link to the actual info file at the ap-
propriate position in the subdirectory tree. For a scheduler that is not loaded into the hierarchy, the
“info” is actually present in /proc/bossa.

An easy way to get an overview of the hierarchy is to type “ls -l” in /proc/bossa. The root is the
scheduler for which there is both an “info” file and a subdirectory. The positions of other schedulers
in the hierarchy are indicated by the symbolic links. There are no symbolic links for the schedulers
that are not yet loaded into the hierarchy.

• April 20, 2003: The following is some information on using virtual schedulers:

– Writing a scheduler for use in a hierarchy:
A process scheduler must define the interface functions attach and detach to allow a process
to attach itself to the scheduler and to detach itself from the scheduler, respectively. The first
argument to either function is the affected process. The is invoked explicitly, either by the
affected process or by some other process, and can take other arguments. The detach function of
the scheduler currently managing the affected process is invoked implicitly by the attach function
of the new scheduler; this function does not take any arguments other than the affected process.
The attach function should explicitly place the affected process in either a READY or BLOCKED
state. The detach function should not explicitly affect the state of any process.
A virtual scheduler must define an attach function, which is used when a new child scheduler is
added to the virtual scheduler. Currently, it is not possible to remove any sort of scheduler from
the hierarchy, so there is no detach function in this case.

4



– Adding a new scheduler to Bossa:
Currently, all schedulers must be statically linked with the kernel. The easiest way to add a
new scheduler to the system is to simply replace the file of an existing scheduler with the new
definition. The available file names are:
∗ kernel/Linux.c
∗ kernel/EDFLinux.c
∗ kernel/EDFRTLinux.c
∗ kernel/Progress.c
∗ kernel/Fixed priority.c
∗ kernel/Proportion.c
∗ kernel/Proportion prio.c

In each case, the scheduler should be given a name that corresponds to that of the file to be
replaced. For example, one could define the scheduler EDFRTLinux, and then replace ker-
nel/EDFRTLinux.c with the C code generated for this scheduler.

– The default scheduler:
Every hierarchy has a default process scheduler, which is the scheduler that is loaded at boot time
and that is the initial parent of all new processes. This scheduler must be declared to be “default”
and must define the event handlers process.new.initial process, which is invoked on creation of the
first process, and process.new.fork, which is invoked on creation of all subsequent processes. The
event process.new.fork may refer to e.source (where e is the name of the handler’s event argument)
to access the parent of the new process if this parent is also managed by the default scheduler.
This property must be checked using the primitive srcOnSched before referencing e.source.
Every virtual scheduler in a hierarchy that is an ancestor of the default process scheduler must
itself be declared to be “default”. Such virtual schedulers must contain a process.new.fork event
handler, but not a process.new.initial process handler, because this event only occurs at boot time
when no virtual scheduler is yet loaded.
The default process scheduler is chosen using the “bossa” boot-line argument. Possible values are
as follows:
∗ edf: The scheduler in the file kernel/EDFLinux.c is the default scheduler.
∗ edfrt: The scheduler in the file kernel/EDFRTLinux.c is the default scheduler.
∗ progress: The scheduler in the file kernel/Progress.c is the default scheduler.
∗ Anything else, or no “bossa” argument: The scheduler in the file kernel/Linux.c is the default

scheduler.
– Creating a hierarchy:

The program bossa/manager.c provides a small interactive menu that allows the creation of a
hierarchy. This program can be compiled using gcc with no arguments. Executing this program
should give the following output:

Available schedulers:
0. Fixed_priority (VS, not loaded, default)
1. EDFLinux (PS, not loaded, default)
2. EDFRTLinux (PS, not loaded, default)
3. Progress (PS, not loaded, default)
4. Linux (PS, root, default)
5. Proportion (VS, not loaded, default)
6. Proportion_prio (VS, not loaded, default)

Default path:
Linux
Connect? (parent, child)

5



“Available schedulers” indicates the schedulers that are compiled with the kernel and for each one
the following information: whether the scheduler is a process scheduler (PS) or virtual scheduler
(VS), whether the scheduler has been loaded, and whether the scheduler is able to be a default
(process or virtual) scheduler. “Default path” indicates the schedulers on the path from the root
scheduler to the default process scheduler. In the example, only the Linux scheduler has been
loaded, so it is both the root and the default scheduler. Finally, the program prompts the user for
two schedulers to connect, to be indicated by their numbers. The parent scheduler comes first.
One of the mentioned schedulers must already be loaded and the other must not yet be loaded.
If a new child is added a virtual scheduler, the user is prompted for the various arguments of the
attach function of the virtual scheduler.
If running this program gives an error message rather than the list of available scheduler, the
problem is probably that devfs was not selected in the configuration. Select devfs and then
recompile the kernel. The use of devfs is not compatible with the name of the mouse device
assumed by the standard configuration file for X windows on some versions of Linux. A possible
solution is to make a link from /dev/psaux to /dev/mouse, however we do not guarantee the
correctness or effectiveness of this solution.

– Observing the structure of a hierarchy:
The manager program mentioned above gives some information about the hierarchy, including
the path from the root scheduler to the default process scheduler. This program can safely be
terminated by ˆC, and thus it can be used to obtain information about the structure of the
hierarchy as well as to add schedulers to the hierarchy.
Some information about the root scheduler is available via the /proc file system. Namely, when
the hierarchy contains a virtual scheduler at the root, the file /proc/sys/bossa/scheduler lists the
states defined by this scheduler and the states of its child schedulers. No information about the
child schedulers is available at present, however.

– Moving between schedulers:
For any scheduler named XXX, the Bossa compiler generates the files user XXX.c and user XXX.h,
which are stub functions for the interface functions defined by the scheduler and the corresponding
header files, respectively. Moving between schedulers is done by simply calling the attach function
of the desired scheduler, or in practice the stub function bossa XXX attach. The arguments are
the pid of the affected process (or 0 for the current process) and any other arguments specified
by the scheduler definition. The names and types of these arguments can be found in the stub
prototypes contained in the user XXX.h header file.
The stub function header file user XXX.h contains any type declarations contained in the policy.
A notable example is the set of enum type declarations. The Bossa compiler makes no effort to
give enum type elements unique names, precisely because they can be part of the user interface.
But this lack or renaming can lead to conflicts if several schedulers use the same names, and
a single program would like to move among these schedulers, or more generally use interface
functions from several such schedulers.

• April 8, 2003: Bossa accepts the boot-time arguments bossa=edf, bossa=edfrt, and bossa=progress to
select the scheduler defined in the file kernel/EDFLinux.c, kernel/EDFRTLinux.c, or kernel/Progress.c
as the root scheduler. If any other value for bossa is provided or if no value is provided, the scheduler
defined in the file kernel/Linux.c is selected.

• February 16, 2003: Bossa relies critically on the use of devfs. Thus, devfs must be turned on in
the Linux configuration file (config.in) for Bossa to boot. Furthermore, the use of devfs implies that
the mouse driver is placed in the directory /dev/misc/psaux. For more information on devfs, consult
Documentation/filesystems/devfs/README

• December 18, 2002: The event unblock.schedule has been removed, as its effect is essentially the
same as an unblock followed by a yield.system.immediate.

6



The program bossa/manager.c allows building a hierarchy with a fixed priority virtual scheduler at the
root and any of the process schedulers that are included in the system as children. The support for
this hierarchy is rather minimal, however. Currently, new processes are assigned to process schedulers
in a round-robin fashion, and there is no way to move a process from one scheduler to another.

Internally, the structure of process attributes has been moved from a separate structure into the
task struct structure maintained by Linux for each process. The amount of space is controlled by the
variable CONFIG BOSSA DATA SIZE that can be initialized during the kernel configuration process
(e.g. make xconfig). There is no verification that enough space has been reserved. By default, there is
enough space for 20 integer-sized values.

• October 23, 2002: The language provides a trace declaration that creates a trace of the targets of a
specified set of events. An example of such a trace declaration is as follows:

bool trace_on = false;

trace 100 { bossa.schedule, block.* }
{ priority, ticks }

{ trace_on }

The trace declaration should appear just after the ordering criteria declaration and contains four parts:

– The number of events that are recorded in the trace.

– The names of the events that are included in the trace.

– The process structure fields and global variables whose values are stored in the trace for each
event.

– An expression, indicating whether events should currently be traced. This expression can only
refer to global variables.

Interface functions can be defined to control the expression argument, eg as follows:

void start_trace() { trace_on = true; }

void end_trace() { trace_on = false; }

The fourth argument is optional; if it is absent, tracing begins at boot time.

The trace can be reset interactively at any time using sysrq-t (note that in the Bossa kernel, the
letter “z” has been rebound to sysrq, so this should be “zt” in practice). At this time, the contents
of the trace is printed using printk, and the trace counter is set to 0. Unfortunately, the amount of
information that when printed with printk actually shows up in the log files (eg, /var/log/messages)
seems to be limited, so tracing more than a few hundred events does not seem to be useful.

• October 22, 2002: The kernel provides some functions for manipulating timers that can be declared
as external functions and used in a Bossa policy, as illustrated in the EDF policy. These functions are:

– system struct timer list no timer(): returns a null value of timer type.

– system struct timer list init bossa timer(process, int): allocates the timer structure, initializes its
timeout, and returns the timer structure.

– void end bossa timer(system struct timer list): if the timer argument is not NULL, calls del timer sync
and frees the timer structure.

– void reset bossa timer(system struct timer list, int): calls mod timer to reset the times to time
out at time indicated by the second argument.

7



– int now(): returns the current value of jiffies.

No verification is performed of the timer functions. In particular, neglecting to call end bossa timer
when a process associated with a timer ends can crash the system.

• October 17, 2002: The compiler takes one argument, which is the name of the file containing the
policy. The compiler creates three files: c-code/policy.c, c-code/user policy.h, and c-code/user policy.c,
where policy is the name of the policy. c-code/policy.c is the compiled policy, and should be placed
in the kernel subdirectory of the kernel source tree. c-code/user policy.h and c-code/user policy.c are
are a header file and an implementation of the user interface functions, and should be linked with any
application that would like to use the interface functions. Warning: the compiler is a bit slow.

• October 9, 2002: The current version of Bossa provides two possible schedulers: a Bossa reimple-
mentation of the Linux scheduler and an implementation of a combined Linux and EDF scheduler.
These can be selected using make xconfig. Reservations can be made using the combined Linux and
EDF scheduler, using the IOCTL interface defined in kernel/bossa edf dev.c.

The system calls nice and setpriority affect the Bossa priority of a process.

8


