
Bossa Nova: Introducing Modularity into the
Bossa Domain-Speci�c Language

Julia L. Lawall, DIKU, University of Copenhagen

Herv�e Duchesne and Gilles Muller,
OBASCO Group, �Ecole des Mines de Nantes-INRIA, LINA

Anne-Fran�coise Le Meur, Jacquard Group, LIFL/INRIA, Lille

September 29, 2005



Domain-Speci�c Languages (DSLs)

DSL: A language dedicated to a particular domain.

I Captures a family of programs.
I Provides high-level domain-speci�c abstractions that

I Simplify programming.
I Enable veri�cations, optimizations.

Useful when:

I Programming within the program family is often needed.
I Programming within the program family requires highly

specialized knowledge.

Examples: lex, yacc, SQL, languages for graphics, Web
programming, etc.



How to create a DSL?

I Analyze the domain to identify a program family.

I Design the language.

I Implement the language.



Problem: unanticipated program subfamilies

Program subfamily may raise unanticipated needs.

Embedded language approach

I DSL implemented within a fully featured host language.

I Extra features (functions, modules, etc.) available if new
needs arise.

I Problem: These features may not match the domain.

Direct approach
I Some work required to implement new features.

I But, new features can be tailored to language design goals.



This talk

I Our example: The Bossa DSL for OS kernel process scheduling.

I Evolution of Bossa to meet unanticipated needs:
{ Modules and aspects.

I Evaluation:
{ Bene�ts of the new features.

{ Comparison to other approaches.

I Conclusions and future work.



Bossa: a DSL for OS kernel process scheduling

Process scheduling: How an OS selects a process for the CPU.

I Many scheduling policies (round-robin, rate monotonic, etc.).
I No policy is perfect for all applications.
I Policies form a program family.

Implementing a scheduler requires:

I Understanding the scheduling policy.
I Understanding the target OS.

I Any error can crash the machine.

) An ideal DSL target . . .

I Bossa [EW2002, ASE2003, PEPM2004, GPCE04, HASE05, IFM05]



The process scheduling problem

CPU:

Other processes:

A process arrives.



The process scheduling problem

CPU:

Other processes:

A process arrives.



The process scheduling problem

CPU:

Other processes:

The process is elected.



The process scheduling problem

CPU:

Other processes:

Another process arrives.



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The red process blocks.



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The blue process is elected.



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

Another process arrives.



The process scheduling problem

CPU:

Other processes:

The red process unblocks.



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

The blue process blocks.



The process scheduling problem

CPU:

Other processes:
�������� ??

??
??

??

Which process is elected next?



Scheduling concepts

I Process states (running, ready, blocked, etc.).

I Process attributes (quantum, deadline, etc.).

I OS events (blocking, unblocking, etc.).



The Bossa DSL, by example

scheduler EDF = f
process = f
time period;
time wcet;
time absolute deadline;
timer period timer;

g
states = f
RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

g
ordering criteria = f lowest absolute deadline g
handler (event e) f ... g

g



The Bossa DSL, by example

scheduler EDF = f
process = f
time period;
time wcet;
time absolute deadline;
timer period timer;

g
states = f
RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

g
ordering criteria = f lowest absolute deadline g
handler (event e) f ... g

g



The Bossa DSL, by example

scheduler EDF = f
process = f
time period;
time wcet;
time absolute deadline;
timer period timer;

g
states = f
RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

g
ordering criteria = f lowest absolute deadline g
handler (event e) f ... g

g



The Bossa DSL, by example

scheduler EDF = f
process = f
time period;
time wcet;
time absolute deadline;
timer period timer;

g
states = f
RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

g
ordering criteria = f lowest absolute deadline g
handler (event e) f ... g

g



The Bossa DSL, by example

scheduler EDF = f
process = f
time period;
time wcet;
time absolute deadline;
timer period timer;

g
states = f
RUNNING running : process;
READY ready : select queue;
BLOCKED blocked : queue;
BLOCKED computation ended : queue;
TERMINATED terminated;

g
ordering criteria = f lowest absolute deadline g
handler (event e) f ... g

g



Bossa event handlers

handler (event e) f
On block.* f e.target => blocked; g

On unblock.preemptive f
e.target => ready;
if (!empty(running) && e.target > running) f
running => ready;

g
g

On bossa.schedule f
select() => running;

g
...

g

Veri�ed with respect to a model of OS scheduling-related behavior.
[GPCE04]



Bossa event handlers

handler (event e) f
On block.* f e.target => blocked; g

On unblock.preemptive f
e.target => ready;
if (!empty(running) && e.target > running) f
running => ready;

g
g

On bossa.schedule f
select() => running;

g
...

g

Veri�ed with respect to a model of OS scheduling-related behavior.
[GPCE04]



Using Bossa revealed unanticipated needs

Applications:
I An encyclopedic multi-OS library of scheduling policies.

{ Revealed program sub-families.

I Scheduling policies based on resource usage.
{ Revealed cross-cutting concerns.

Bossa Nova: extending Bossa with modules and aspects.



The need for modules

The subfamily of periodic scheduling policies:

EDF

EDF

DM

DM

FUP

FUP

LCT

LCT

LLF

LLF

RM

RM

SCT

SCT

AbsoluteDeadline ElapsedTime

Common Timer

Average size: 123 lines.
100 in common.



Design goals for modules

I Understandability.

I Veri�ability.

I Code reuse.



Understandability

Provide a centralized, global view.

scheduler EDFSched = f
states = f RUNNING running : process; READY ready : select queue;

READY yield : process; BLOCKED period yield : queue;
BLOCKED blocked : queue; TERMINATED terminated; g

modules f EDF(),
AbsoluteDeadline(),
Timer (running, ready, period yield),
Common (running, ready, yield, blocked, terminated) g

process f . . . g
ordering criteria f EDF g
handler f unblock.timer.period timer : AbsoluteDeadline, Timer; g

g



Veri�ability

Enforce �ne-grained control over access to module elements.

module AbsoluteDeadline() f
process = f time deadline; time absolute deadline; . . . g
handler (event e) f
On unblock.timer.period timer f
e.target.absolute deadline = now() + e.target.deadline; . . . g g g

module EDF() f
process = f requires time absolute deadline; . . . g
ordering criteria = f lowest absolute deadline g

g

I Attributes:
{ De�ning module can write.
{ Importing modules can only read.

I States can be declared as unshared.



Code reuse
Minimize explicit inter-module references

module AbsoluteDeadline() f
process = f time deadline; time absolute deadline; . . . g
handler (event e) f
On unblock.timer.period timer f
e.target.absolute deadline = now() + e.target.deadline;
next(); g g g

module EDF() f
process = f requires time absolute deadline; . . . g
ordering criteria = f lowest absolute deadline g

g

Connections are made in the scheduler:

scheduler EDFSched = f
process f EDF.absolute deadline reads AbsoluteDeadline.absolute deadline, . . . g
handler f unblock.timer.period timer : AbsoluteDeadline, Timer; g

g



Evaluation

Code sharing:

Modules Common Timer AbsoluteDeadline ElapsedTime
Lines of code 68 47 28 45

Policy-speci�c
module Scheduler Modular Monolithic

Periodic xxx DM 23 22 160 109
EDF 26 34 203 123
FUP 20 27 162 110
LCT 9 26 150 106
LLF 45 39 272 161
SCT 42 35 237 147
RM 9 26 150 106

Family total 503 862

Separation of concerns.

Isolation of OS-speci�c behavior.



Comparison to other module systems: Understandability

I Our approach: global view in the \scheduler".

I Some systems, eg Units, provide basic blocks and combiners,
but combiners can combine combiners.

I Other systems, eg Java, ML, express composition within the
basic blocks.



Comparison to other module systems: Veri�ability

I Our approach: restrictions on inter-module accesses.

I Const: read-only for everyone.

I Public/private: restricts visibility, not writeability.

I Getter/setter functions: not enforced.



Comparison to other module systems: Code reuse

I Our approach: modules don't name other modules explicitly.

I Some systems address this, eg Units, Mixins, Traits.

I Others use explicit names widely, eg name of a superclass.

Getter/setter functions: not enforced.



Future work

I Modular veri�cation of Bossa Nova code.

I Veri�cation of policy-speci�c properties.

I Guidelines for DSL design and evolution.

I Further applications and generalizations:
{ Policies for controlling energy usage.

{ Scheduling in OS hierarchies.



Conclusion

I Using a DSL may highlight program subfamilies, which can
introduce unanticipated needs.

I Language features to meet these needs should be designed in
a domain-speci�c way, to match language design goals.

I Our examples: modules and aspects in Bossa.
{ Designed according to principles of understandability,

veri�ability, and code reuse.



More information

I Bossa and Bossa Nova grammars.

I Compiler and veri�er for Bossa/Linux.

I Integration of Bossa in Linux 2.4 and 2.6.

I Examples.

I Teaching materials.

http://www.emn.fr/x-info/bossa/


